Temperatursensor für künstliche Haut

Die Fähigkeit, Temperaturänderungen wahrzunehmen, ist eine wichtige Funktion der menschlichen Haut. Forschende an der ETH Zürich haben jetzt einen hochempfindlichen und zugleich flexiblen Temperatursensor entwickelt, der demnächst in Prothesen und Roboterarmen Verwendung finden könnte.

Die biegsame transparente Sensorfolie kann die Temperatur der weißen Wärmeplatte messen. In Rot eine kleine Greifzange. (Bild: ETH Zürich / Raffaele Di Giacomo)

Klapperschlangen und Grubenottern sind bekannt dafür, dass sie ihre Beute auch in völliger Dunkelheit sicher orten können. Das hochsensible Grubenorgan zwischen Auge und Nase erlaubt es ihnen, den warmen Körper eines Säugetiers noch aus einem Meter Entfernung wahrzunehmen. Die genaue Funktionsweise dieser Temperatursensoren wurde erst vor wenigen Jahren entschlüsselt.

Wissenschaftlern um Chiara Daraio vom Department Maschinenbau und Verfahrenstechnik an der ETH Zürich ist es nun gelungen, einen auf natürlichen Substanzen basierenden künstlichen Temperatursensor herzustellen, der ähnlich empfindlich ist und dank seiner Biegsamkeit und anderer nützlicher Eigenschaften schon bald als Bestandteil von künstlicher Haut in Prothesen oder Roboterarmen zum Einsatz kommen könnte.


Entdeckung durch «Cyber-Holz»

Seine Erfindung verdankt dieser Temperatursensor einem glücklichen Zufall. Raffaele Di Giacomo, der das Projekt im Labor der ETH-Professorin Daraio leitete, war im Rahmen seiner Forschung zunächst auf eine Besonderheit des pflanzlichen Materials Pektin gestossen. Aus dem Alltag ist Pektin eher als Geliermittel für Puddings oder Konfitüren bekannt, doch Di Giacomo interessierte sich für eine andere Eigenschaft dieser aus vielen aneinandergereihten Zuckermolekülen bestehenden Substanz.

Experimente an den Ästen von Bäumen, deren Zellwände Pektin enthalten, hatten nämlich ergeben, dass deren elektrische Leitfähigkeit stark von der Temperatur abhängt. Um den dafür verantwortlichen Mechanismus zu erforschen, stellten die Zürcher Forscher ein künstliches «Cyber-Holz» aus Pektin und Kohlenstoff-Nanoröhrchen her (siehe ETH-News vom 31.03.2015).

Durch Messungen des elektrischen Widerstands bei verschiedenen Temperaturen fanden sie schliesslich heraus, dass Kalziumionen, die an den Kontaktstellen zwischen zwei Zuckermolekülen des Pektins gefangen waren, für den Sensor-Mechanismus verantwortlich waren. Je höher die Temperatur, desto mehr freie Kalziumionen befanden sich im künstlichen Holz, und desto besser leitete es elektrischen Strom.

Mehr zum Artikel und der Innovation finden Sie auf der ETH Zürich News Homepage.